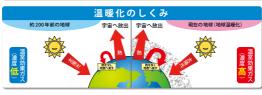
CCS大規模実証試験が 苫小牧で実施されています

苫小牧 CCS 大規模実証試験は、2012 年度より実施しています。

なぜCCSが必要なの?


CCSとは二酸化炭素を大規模に削減できる 地球温暖化対策技術の一つです。

現在温暖化が急速に進んでいます

たとえば、ホッキョクグマは、主に氷の下に隠れている アザラシを食料としています。温暖化によって夏が長 くなり、氷のない期間が延びると、アザラシが獲れなく なってしまいます。

ホッキョクグマは、北極圏がこれ以上暖かくなると、生 きていくことができないかもしれません。

CCUS のCO2削減ポテンシャル

CCUS* による COa削減量を. 2030 年までに全世界で年間 16 億トン (1.6Gt)、2050 年に はその約 5 倍の年間 76 億ト ン (7.6Gt) にまで増やすこと を見込んでいます。

国際エネルギー機関(IFA)は

■ 2020年を基準とした(O:劍護量(年平町)の内部 ホポエカ・太陽介バイオが料(株)の その他の特別が提 その他の問題が提 CCUS (推集) 当時: EA DOZI Net Zero by 2000 a Foodmap for the Global therepy EA かせべての解析を保証。 ACE ALE 20日本開発はACE 10.2-1 2021-25 2026-30 2031-35 2036-40 2041-45 2046-50

*CCUS: Carbon dioxide Capture, Utilization and Storage (分離・回収、利用、貯留)

日本の様々な温暖化対策技術

太陽光発雷

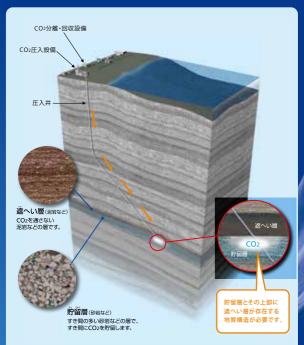
CCSとはどんな技術?

二酸化炭素を地中深くに安全に 閉じ込める技術です。

Carbon dioxide Capture and Storage

_ 二酸化炭素(Co₂)を 回収して 貯留する

分離・回収⇒圧入⇒貯留


工場や発電所から排出された CO₂を含むガスから、

化学や物理の力で 高純度の CO₂を取り出し、

地中に圧入して安定的に貯留。

CCSに適した地質構造とは?

隙間の多い貯留層と、ふたの役割をする 遮へい層の、2つの地層のセットが必要です。

日本初の CCS大規模実証試験

苫小牧決定までのプロセス

- 貯留に適した地質構造の存在
- 試験に必要な CO₂の供給源がある
- 地下の地質情報が十分にある

実証試験の概要

日本で初めて回収から貯留までのCCS一貫システムを実証

CO2供給源	分離・回収方法	貯留層(深度)	CO2圧入量	貯留層タイプ
製油所内水素製造装置	アミン溶液による 化学吸収法	・朝別層 (砂岩、深度1,000-1,200m) ・滝ノ上層 T 1部層 (火山岩類、深度2,400-3,000m)	累計300,110トン 圧入期間:2016年4月6日~ 2019年11月22日	海底下 深部塩水層

地上設備の建設

分離・回収、圧入に必要な設備の 設計・建設、試運転

圧入井の掘削

海底下深くの貯留層にCO2を圧入 するための坑井を掘削

安全性確保にかかる調査、検討、法規制対応

安全性を確保するための新たな 技術基準の導入等

事前モニタリングの実施 必要なデータ取得のためのモニ

必要なデータ取得のためのモニ タリングネットワークの構築と事 前データの取得

CO₂を海底下に圧入

年間10万トン規模のCO2を海底下約1,000mと 約2,400mの2つの貯留層へ圧入

モニタリングの実施

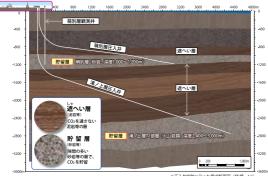
貯留層でのCO2の挙動観測、自然地震や微小振 動観測、海洋環境調査を実施

実証設備の性能検証

CO₂ 分離・回収エネルギーの検証、異なる2つ の貯留層への同時圧入制御および安全システム の検証等

安全性確保の評価と法規制対応


安全性を確保するために導入した技術基準・ガ イドライン等の評価を行うとともに、国内法規 制のあり方等を整理する


地上設備と圧入する地層

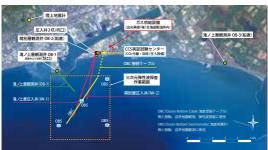
陸上の設備から海底下の2つの地層に圧入

ガス供給設備より供給された CO2を含むガスから、CO2のみを 分離し、濃度99%以上の高純度 のCO2を回収する設備です。

回収したCO2を圧縮機を 使って昇圧し、圧入する 設備です。

※圧入井坑跡に沿った模式断面図(総:横 =1:1)

設備の配置



地上設備と圧入地点の周辺に充実した モニタリングシステムを配置

隣接する既存の製油所内にあるガス供給設備から送出された CO₂ 含有ガスをパイプラインで実証 試験センターまで運び、そこで分離・回収された CO₂を2本の圧入井を通して海底下に圧入。

自然地震と微小振動を観測するために、多数の地震計を広範囲に設置しました。

分離•回収設備

2段吸収法を採用し、省エネルギーでの 分離・回収を実現

分離・回収設備

CO2含有ガス中の CO2を分離・回収

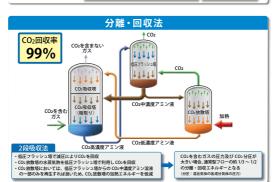
CO₂吸収塔

アミン溶液によりCO2を吸収

CO2放散塔

アミン溶液を加熱することに よりCO2を放散

低圧フラッシュ塔


減圧効果等でアミン溶液から (O)を放散

日量600トン (年間20万トン相当) の 分離・回収能力があります。

アミンタンク

圧入設備

地下にCO2を安全に圧入するために、 適切な圧力まで昇圧する設備

CO2圧縮設備

分離・回収したCO2を 圧入圧力まで昇圧



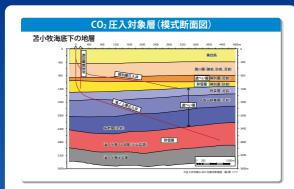
第二低圧CO2圧縮機

(~ 9.30MPaに昇圧) ▶ 苗別層に圧入

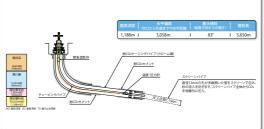
高圧CO2圧縮機

(~ 22.8MPaに昇圧) ▶漁ノ上層に圧入

2つの圧入井(坑口部分)



滝/上層圧入井 萌別層圧入井


2つの圧入井

海底下の深さの違う2つの地層に圧入する井戸

萌別層圧入井(坑内模式図)

モニタリング

CO2圧入後の状態や、圧入による影響を観測

貯留層

貯留層での CO2 の挙動観測。 観測データを CO2 挙動予測 シュミレーションと比較・分析 します。

自然地震、微小振動

地下のCO2 が自然地震の影響を 受けていないこと、CO2 圧入と 微小振動の発生には関連がない ことをデータで確認します。

海洋環境

海洋汚染防止法に基づき、 海流、水質、海底の泥、海 洋生物などの調査・観測を 行います。

自然地震と微小振動を観測するために、多数の地震計を広範囲に設置しました。

モニタリングシステムの概要 管理検(観測データ集約) ←観測データ 観測データ→ Hi-net データ (自然地震) 観測データ **←観測データ** 観測データ 陸上設置 地震観測占 滝ノ上層 萌別層 滝ノ上層 観測井OB-1 観測井OB-2 観測井OB-3 滝ノ上暦 圧入井 ORS ORS ORS 常設型OBC 人 一 前別解砂岩解 とうふくかり かっと): CO₂流量センサー 温度・圧力センサー 3成分地震計

そのは「Consa Sation Calchiagを指示ープル)等小系数。自然地震解説、単独は何意に使用、CSS (Consa Sation Settomenter 温度性限計 等小系数。自然地震能測に使用 本本体証証券を出行を一個金銭のスプルの最後を持ついませた。 別に前システムの温用を停止し着主しました。現在は、戦闘井と南延型の区で用いて常時機測を機能しています。

計器室

分散制御システムにより各股偏を制御し、運転状況や 異常を監視